Pages

.

Showing posts with label Wolbachia. Show all posts
Showing posts with label Wolbachia. Show all posts

Deep-Sea Vents: The Mosquito Connection

Quick: What species of life on earth is the most abundant? (Which species has more living members than any other species?) Hint: If an alien probe lands in a random location on earth, chances are better than 70% that the probe will encounter this organism.

If you're thinking in terms of the ocean, you're on the right track. What may surprise you is the connection between the world's-most-populous-organism (to be revealed shortly) and the mosquitoes that've been dive-bombing your neck all week. Equally amazing is the link between the mosquitoes in your back yard and hydrothermal vents in the ocean floor.

The hundreds of bright little particles at the
narrow end of this wasp egg are Wolbachia cells.
I wasn't thinking about marine biology or deep-sea hydrothermal vents when I went online at http://genomevolution.org the other day to do a little nosing around into the genome of Wolbachia pipientis, the ultra-tiny bacterial parasite carried by nearly every mosquito on earth. (Caution: Don't attempt the following DNA-analysis tricks on your own unless you want to become thoroughly addicted to desktop omics. I'm a microbiologist by training. I can do these stunts safely.) "Parasite" is actually the wrong word. Our tiny friend Wolbachia doesn't just parasitize the mosquito; it's an integral part of the mosquito. Wolbachia can't live outside its insect host—and guess what? The host frequently can't live without Wolbachia. The two provide essential services for each other, an arrangement known as mutualism.

I would argue that Wolbachia is more than a mutualistic symbiont: It's a proto-organelle, something very close to what Lynn Margulis had in mind as the ancestor of today's mitochondrion.

Wolbachia can't live on its own in the outside world (as far as anybody knows): it needs to live inside a host (generally an arthropod, although filarial worms also carry Wolbachia). Inside its host it occupies a very special niche: It lives in the nursery cells of the insect's ovary—the cells that will go on to become egg cells.

This is no ordinary symbiosis. I mentioned in an earlier post that Wolbachia carries with it genes for reverse-transcriptases, resolvases, recombinases, transposases, translocases, DNA polymerases, RNA polymerases, and phage integrases—a complete suite of retroviral machinery, designed for export of foreign DNA into host DNA. And indeed, researchers have found that Wolbachia DNA is quite often embedded in the host's own nuclear DNA. (One group, looking at four insect hosts and four nematode hosts, found anywhere from 500 base-pairs to over a million base pairs of Wolbachia DNA residing in the nucleus. Another group found 45 Wolbachia genes incorporated in a fruit-fly host's nuclear DNA.) The situation with Wolbachia thus parallels the situation with mitochondria, where we know that 97% of the gene products that go to make up a mitochondrion are actually encoded in nuclear DNA, not mitochondrial DNA.

When you encounter an organism as baffling as Wolbachia, oftentimes you want to know what its relatives are—what it's most closely related to. When a new or poorly understood organism has a close relative that's already well-studied, sometimes you learn a lot in a hurry. That's particularly true of pathogens (not that Wolbachia is a pathogen per se). Pathogens have virulence strategies of various kinds. Maybe Wolbachia has symbiosis strategies that it learned from a relative?

The problem with a lot of the super-tiny microbes (which Wolbachia definitely is, with only a quarter as much DNA as E. coli) is that their relatedness is not always well understood. Organisms are assigned a taxonomic slot, then the assignment changes a few years later, after they're better-studied. (So for example, Cowdria ruminantium was eventually renamed Ehrlichia ruminantium, and a bunch of former Ehrlichias are now Neorickettsias, except the ones that attack red blood cells, which are now Anaplasmas.) Taxonomy at this end of the evolutionary tree is definitely a work in progress.
Deep-sea thermal vents like this one
are home to organisms like Thiomicrospira
that can grow on sulfide, CO2, and basic salts.

Fortunately, it's easy nowadays (what with so many organisms' DNA sequences available online) to go on the web and compare genomes directly, using a tool like SynMap, which is what I started doing with Wolbachia. I started going down the list of mini-microorganisms and began running DNA similarity tests of Wolbachia against Ehrlichia, Neorickettsia, Anaplasma, Chlamydia, and "the usual suspects" at the ultra-small-chromosome end of the tree of life.

What I found surprised me. A bizarre little bacterium called Thiomicrospira kept showing up in my BLAST searches as having many genes in common with Wolbachia (based on sequence matches in large numbers of genes). None of the taxonomy charts showed the two to be related. But DNA doesn't lie. I kept coming up with matches across hundreds of genes. (Bear in mind, Wolbachia has only about 1300 genes to begin with, which is very small, even for a bacterium.)

What's bizarre about Thiomicrospira is that it's one of those fairly newly discovered microbes that lives on sulfur, heat, and CO2 at the bottom of the ocean, in total darkness, in the vicinity of thermal vents. Thiomicrospira is the kind of life form NASA takes a great interest in, because it could be a prototype for exactly the type of survive-in-the-dark CO2-using organism that might live under the ice crust of Europa (Saturn's moon). In theory, there could be geothermal vents on the floor of the large ocean of liquid water that NASA is pretty sure exists under Europa's ice. If there's life down there, it could very well look like Thiomicrospira.

But why should Thiomicrospira have so many genes in common with a mosquito symbiont? Thiomicrospira organism lives at the bottom of the ocean; Wolbachia lives inside arthropod eggs. One obtains its carbon in the form of CO2; the other produces CO2 as a waste product. One is adapted to live in warm salt water; the other lives in cold-blooded insects. In theory, these two germs couldn't be further apart. And yet, oddly enough, they not only have hundreds of genes in common, the genes are well-matched from a DNA sequence-similarity standpoint. Thiomicrospira's DNA even incorporates a prophage module, and some of its phage genes show a high percentage base-pair similarity with the phage genes of Wolbachia. (See screen shot below.)
Remarkably, Thiomicrospira and Wolbachia share certain phage genes in common, as shown here. The genes have a DNA sequence identity of about 60%.
After doing a little more detective work, I found an organism that might very well form a "missing link" between the mosquito symbiont and the thermal-vent dweller. This organism kept showing up in my analyses as having a high degree of DNA similarity with both Thiomicrospira and Wolbachia. The organism in question is Pelagibacter ubique (now known as Candidatus pelagibacter, although some might question this taxonomic assignment since all other Candidatus members are obligate intracellular symbionts), and it's an astonishing organism in two ways: First, it's the smallest non-parasitic (free-living) bacterium known to science, with only 1.3 million base-pairs in its DNA (making it slightly smaller than Wolbachia and its tiny cousins). Secondly, it's the most numerous living thing on earth. It's present in large amounts in every one of earth's oceans.

Pelagibacter was placed in the Candidatus clade in 2007 due to its small genome and cell size and certain ribosomal markers. It has a very mitochondria-like genetic profile, and in fact some people think Pelagibacter is the ancestor of today's mitochondrion, a theory that's all the more satisfying when you consider that Pelagibacter is both ancient and tied to the sea.

My analysis using SynMap found that Pelagibacter and its thermal-vent-dwelling cousin Thiomicrospira share about 660 genes (out of 1480 or so for Pelagibacter), whereas Wolbachia and Pelagibacter share around 581, and Thiomicrospira and Wolbachia share around 1000. These are so-called non-syntenous point matches between genes; instances where the same gene occurs in both organisms, with a high percentage of base-pair matching. Synteny is a concept that takes gene-matching one step further and says that clusters of similar genes are what count. Synteny at the level of higher plants and animals is one thing, but at the level of a mini-microbe it tends to lack meaning, because the genes of bugs like Wolbachia are notoriously mobile: They find new positions on the chromosome over time (probably because of the large number of transposases, nucleases, and integrases in the genome). Even so, I decided to carry out a bit of syntenic analysis to see what I could find out.

For purposes of my analysis I defined a "syntenon" as three or more co-proximal genes that match three or more genes on the other organism's genome. But to be part of a syntenon, all three genes in a triplet have to occur within a 30-gene span (and match 3 genes in a 30-gene span on the other organism's DNA) plus the genes have to be in the same order in both organisms.

A planet-spanning waterworld is thought to exist under
Europa's icy outer crust. If thermal vents exist at the
bottom, any life that exists may look a lot like Thiomicrospira.
Using SynMap, I found that whereas Wolbachia and Pelagibacter share around 157 syntenic genes, and Thiomicrospira and Wolbachia share around 132, Thiomicrospira and Pelagibacter share 250 (which makes sense in that both are ocean-dwellers). For comparison-and-control purposes, I did a triplet match of Thiomicrospira against another chemoautotroph (an organism that gets energy from inorganic chemicals, and carbon from CO2), namely Methanothermobacter marburgensis. There were only 53 syntenic triplets in common between the two chemoautotrophs. (Between Wolbachia and Methanothermobacter, on the other hand, there were only 3 triplet-matches.) Doing a match between two Wolbachia species (a mosquito-dwelling variety and a fruit-fly-dwelling cousin) produced 522 gene matches in syntenic triplets.

It seems reasonable to me, based not just on the previous sorts of analysis but also direct inspection of the genomes (in terms of their respective protein products), that Thiomicrospira evolved from PelagibacterPelagibacter is the most abundant life form in the ocean, and perhaps the oldest. Pelagibacter is also very mitochondria-like, and so is Thiomicrospira, which has rhodanese-like proteins, the full cytochrome system, redox enzymes, citric-acid-cycle enzymes, plus certain characteristic membrane and sensor proteins, flippases, etc. (For what it's worth, Thiomicrospira has the highest signal-transduction profile I've ever seen at http://mistdb.com, again making it very mitochondrial-feeling.)

I'm tempted to say, similarly, that Thiomicrospira and Wolbachia are related. They have phage proteins in common. They both have genes for patatin proteins. They share multiple drug resistance genes. (That's not so strange. Antibiotics occur naturally in the environment.) They share genes for Flp-type pilins. Plus many more coincidences, big and small.

At first blush, a deep-sea thermal vent seems pretty far removed, environmentally, from the egg cell of a mosquito. How to reconcile the difference? Actually, I see similarities. Thiomicrospira thrives at temperatures of 28 to 32 degrees Celsius (which is also true of mosquitoes, although they prefer the 28-degree end of the scale). And blood (the preferred food source for mosquitoes) is comparable in pH and salinity to seawater. Also, mosquitoes have an aquatic lifecycle: they require brackish water in which to lay eggs. Mosquitoes and salt marshes go back millions of years.

It's even possible that Wolbachia might live in deep-sea-vent-dwelling host organisms. In fact, I predict they will be found there. Why? Because in addition to inhabiting flying insects, spiders, mites, and ticks (and filarial worms), Wolbachia have also been found in a very high percentage of crustaceans. We know that crustaceans are often found living near deep-sea thermal vents; and many crustaceans show the characteristic feminization of genetic males that's so often the tipoff to a massive Wolbachia presence in insect populations.

Insects and crustaceans represent two of the oldest, most successful, and most widely distributed life forms of the animal kingdom. Would it really be so surprising if the bacteria that colonize these life forms are closely related to the most common marine bacteria on the planet? I don't think so. Stranger things have happened.



reade more... Résuméabuiyad

Science on the Desktop

For decades, I've been hoping I'd live long enough to see a day when serious science could be done on the desktop by dedicated amateurs. Amateur astronomers know what I'm talking about. You can't do much particle physics on the desktop, and there are no affordable desktop electron microscopes (yet), but if comparative genomics is your thing? Get ready to rock and roll, my friend.

Over the weekend I discovered http://genomevolution.org and promptly went nuts. Let me take you on a tour of what's possible.

First I should explain that my background is in microbiology, and I've always had a soft spot in my heart (not literally) for organisms with ultra-tiny genomes: things like Chlamydia trachomatis, the sexually transmitted parasite. It's technically a bacterium, but you can't grow it in a dish. It requires a host cell in which to live.

It turns out there are many of these itty-bitty obligate endosymbionts (at least a dozen major families are known), and because of their small size and obligate intracellular lifestyle, they have a lot in common with mitochondria. Which is to say, like mitochondria, they're about a micron in size, they divide on their own, they have circular DNA, and they provide services to the host in exchange for living quarters.

When you look at one of these little creatures under the microscope (whether it's Chlamydia or Ehrlichia or Anaplasma or what have you), you see pretty much the same thing. (See photo.) Namely, a tiny bacterium living in cytoplasm, mimicking a mitochondrion.

When Lynn Margulis wrote her classic 1967 paper suggesting that mitochondria were once tiny bacterial endosymbionts, it seemed laughable at the time, and her ideas were widely criticized (in fact her paper was "rejected by about fifteen journals," she once recalled). Now it's taught in school, of course. But we have a long way to go before we understand how mitochondria work. And we really, really need to know how they work, because for one thing, mitochondria seem to be deeply involved in orchestrating apoptosis (programmed cell death) and various kinds of signal transduction, and until we understand how all that works, we're going to be hindered in understanding cancer.

When I discovered the tools at http://genomevolution.org, one of the first things I did, on a what-the-hell basis, was compare the genomes of two small endosymbionts, Wolbachia pipientis and Neorickettsia sennetsu. The former lives in insects; the latter, in flatworms that infect fish, bats, birds, horses, and probably lots else. Note that for a horse to get Potomac horse fever, first the Neorickettsia has to infect a tiny flatworm; then the flatworm has to be ingested by a dragonfly, caddisfly, or mayfly; then the horse has to eat (or maybe be bitten by, although only infection-by-ingestion has been demonstrated) the worm-infected fly. The parasite-of-a-parasite chain of events is not only fascinating in its own right, it suggests (to me) that parasites enable each other through shared strategies at the biochemical level, and I might as well spoil some suspense here by revealing that there's even yet another layer of parasitism (and biochemical enablement) going on in this picture, involving viruses. But we're getting ahead of ourselves.

I mentioned Wolbachia a second ago. Wolbachia is a fascinating little critter, because it's found in the reproductive tract of anywhere from 20% to 70% of all insects (plus an undetermined number of spiders, mites, crustaceans, and nematodes), but they don't cause disease, and in fact it appears many insects are unable to survive without them. Wolbachia are unusual in that the extracellular phase of their lifecycle (the part where they spread from one host to another) isn't known; no one has observed it. What's more (and this part is incredible), Wolbachia have adapted to a stem-cell niche: They live in the cells that give rise to insect egg cells. Thus, all newborn female progeny of an infected mother are infected, and all eggs pass on the Wolbachia. In this sense, the genetics of Wolbachia obey mitochondrial genetics (whereby the mother passes on the organelle and its genome).

I quickly found, via Sunday afternoon desktop genomics, that Wolbachia and Neorickettsia (and other endosymbionts: Anaplasma, Ehrlichia, etc.) have many genes in common—hundreds, in fact. And when I say "genes in common," I mean that the genes often show better-than-50% similarity in DNA base-pair matching.

It's important to put some context on this. These little organisms have DNA that encodes only 1,000 genes. (By comparison, E. coli has around 4,400 genes.) Endosymbionts lack genes for common metabolic pathways. They cannot biosynthesize amino acids, for example; instead they rely on the host to provide such nutrients ready-made. If 400 to 500 of an endosymbiont's 1,000 genes are shared across major endosymbiont families, that's a huge percentage. It suggests there's a set of core genes, numbering in the low hundreds, that encapsulate the basic "strategy" of endosymbiosis.

A little more context: Mitochondria have their own DNA and look a lot like endosymbionts. But here's the thing: Mitochondrial DNA is tiny (only about 15,000 base pairs, versus a million for an endosymbiont). It turns out, 97% of the "stuff" that makes up a mitochondrion is encoded in the nucleus of the host. If you include these nuclear genes, mitochondria actually rely on about 1,000 genes total, of which only 3% are in the organelle's DNA. Lynn Margulis would say that what happened is, the endosymbiont ancestor of today's mitochondrion originally had DNA of about a million base-pairs (1,000 genes), but some time after taking up residency in the host cell, the invader's DNA mostly migrated to the host nucleus.

Why did symbiont-to-host DNA migration stop at 97%? Why not 100%? If we look at that 3%, we find genes coding for tRNA and bacterial ribosomes (specialized protein-making machinery) plus genes for enormous, complex transmembrane enzyme systems: cytochrome c oxidase and NADH dehydrogenase. (The former is the endpoint of oxidative respiration; the latter the entry-point.) Obviously it must be advantageous for these genes to be proximal to the organelle.

But why even have an organelle (a physical compartment)? One might ask why it's necessary to have a mitochondrial parasite swimming around in the cytoplasm at all, when most of the genes are part of the host's DNA? The answer is, the stuff that goes on inside the confines of the mitochondrion needs to be contained, because it's violently toxic stuff involving superoxide radicals, redox reactions, "proton pumps," and Fenton chemistry (transition-metal peroxide reactions). A containment structure is definitely called for, to segregate this toxic chemistry from the rest of the cell.

We might ask how it is that the DNA of the protobacterial ancestor of today's mitochondria wound up in the host nucleus in the first place. Let's consider the possibilities. Protobacterial (symbiont) DNA may have transferred to the host all at once, or it might have migrated piecemeal, over time. Or both. Is it realistic that huge amounts of endosymbiont DNA could have migrated to the host nucleus all at once? Yes. It's been suggested that vacuolar phagocytosis drove invader DNA to the nucleus in a big gulp. Evidence? Wolbachia inhabits the vacuolar space.

But export of genes and gene products to the host might have occurred piecemeal as well. A little desktop exploration provides some clues. If you use GenomeView or any number of other online tools to explore the DNA of Wolbachia, several things pop out at you. First is that many Wolbachia genes are mitochondria-like: They encode for things like cytochrome c oxidase, cytochrome b, NADH dehydrogenase, succinyl-CoA synthetase, Fenton-chemistry enzymes, and a slew of oxidases and reductases (including a nitroreductase). Wolbachia is clearly engaged in providing what might be called redox-detox services for the host—the same value proposition that mitochondria offer. This makes sense, because if Wolbachia cells were a net drag on the respiratory potential of host-cell mitochondria (if they couldn't at least hold their own with respect to mitochondria), the host would die.

The second thing that jumps out at you when you look at the Wolbachia genome is the abundance of genes devoted to export processes: membrane proteins, permeases, type I, II, and IV secretion systems, ABC transporters, etc., plus at least 60 ankyrin-repeat-domain genes—all powerful evidence of specializations aimed at export of genes and gene products to the host. But the most stunning "smoking gun" of all is the presence, in Wolbachia DNA, of five reverse-transcriptase genes, plus genes for resolvases, recombinases, transposases, DNA polymerases, RNA polymerases, and phage integrases. In essence, there's a complete suite of retroviral machinery, designed for export of foreign DNA into host DNA.

An example of one of 113 phage-derived genes in Wolbachia (lower gene array). In this case, the gene matches a phage gene found in Candidatus hamiltonella (upper gene array). The two isoforms exhibit 59% DNA sequence similarity, despite widely differing GC ratios. See text for discussion.

But wait. There's more. The third thing that jumps straight in your face when you start looking at the Wolbachia genome is the presence of (are you ready?) no less than 113 genes for phage-related proteins, including major and minor capsid and HK97-style prohead proteins, plus tail proteins, baseplate, tail tube, tail tape-measure, and sheath proteins; late control gene D; phage DNA methylases; and so on. (For non-biologists: phage is the term for viruses that attack bacteria.)

In the above screenshot, I'm comparing Wolbachia DNA (lower strip) to DNA from another insect-infecting endosymbiont, Candidatus hamiltonella, which is known to contain an intact virus (phage) in its DNA. Many phage proteins in Wolbachia have corresponding matches in the Candidatus genome. In this case, we're looking at a gene (the gold-colored stretch pointed at by red arrows) that is 1440 nucleotides long, with a 59% sequence match across genomes. The match percentage is remarkably high given that the Candidatus version of this gene has a 51.7% GC content while the Wolbachia version has a 40.6% GC. Also, note that Wolbachia itself has an overall GC of 34.2%. The fact that Wolbachia's putative phage genes are significantly higher in GC content than Wolbachia's non-phage genes is good confirmation that the genes really are from phage.

It's 100% clear that viral DNA has made its way into the DNA of Wolbachia (either recently or long ago), and it's reasonable to hypothesize that Wolbachia has repurposed the retrovirus-like phage genes for packaging and exporting Wolbachia DNA to the host nucleus.

Okay, so maybe you have to be a biologist for any of this stuff to make your hairs stand on end. To me, it's a dream come true to be able to do this kind of detective work on a Sunday afternoon while sitting on the living-room couch, using nothing more than a decrepit five-year-old Dell laptop with a wireless connection. The notion that you can do comparative genomics and proteomics while watching an Ancient Aliens rerun on TV is (for me) totally cerebrum-blowing. It makes me wonder what's just around the corner.

reade more... Résuméabuiyad