Pages

.

Showing posts with label BigThink. Show all posts
Showing posts with label BigThink. Show all posts

The Dark Side of Antioxidants

Note: This story, which I wrote back in April 2013, originally appeared in a slightly shorter form at BigThink.com. I'm reproducing it here because I strongly feel the story needs to get out to as many people as possible.

The story of the dark side of antioxidant research isn't well known outside of medical circles. It's an unseemly story, profoundly unsettling; a story that refuses to be made pretty or happy or uplifting no matter how hard you try to duct-tape a silver lining around it. It doesn't fit the "antioxidants are good for you" mantra that sells billions of dollars per year of blueberry- and pomegranate-fortified granola bars and tocopherol-enrichened cereals, acai-berry Jell-O mixes, juices and yogurts with added vitamins, organic baby foods, and so forth, not to mention the billions of dollars of nutritional supplements sold each year (to say nothing of the sub-industry of books and magazines devoted to nutrition).

Still, it's a story that needs to be told. And some of us know where the bodies are buried.

For decades, mainstream medicine pooh-poohed the possibility that vitamins or supplements could "move the needle" on major diseases. Two-time Nobel laureate Linus Pauling was harshly criticized in the 1970s and 80s for suggesting a role for Vitamin C in prevention and treatment of cancer. Even so, laboratory workers had known for years that changes to diet could influence the rate of tumor appearance in lab animals. By the early 1980s, case-control studies and epidemiological evidence from a variety of sources had begun to accumulate, showing that persons who routinely ate large quantities of fresh fruits and vegetables consistently did better with regard to cardiovascular disease (and other diseases) than most people.

In 1981, Sir Richard Peto and colleagues published a paper in Nature that dared asked the simple question: "Can dietary beta-carotene materially reduce human cancer rates?" (Nature, 290:201-208) Shortly thereafter, the National Cancer Institute (whose Chemoprevention branch was headed by Dr. Michael B. Sporn, one of the coauthors of the Nature article) decided to green-light two large intervention-based studies of the cancer-preventing effects of nutritional supplements: a study in Finland involving beta-carotene and alpha-tocopherol (Vitamin E), and a U.S.-based study involving retinol (a form of Vitamin A) and beta-carotene.

The Finnish study (conducted by Finland's National Institute for Health and Welfare) was initially designed to encompass 18,000 male smokers between the ages of 50 and 69. Why just smokers? And why male, and 50+ years old? Lung cancer is ten times more likely to affect smokers; hence a cancer study limited to smokers would need only a tenth as many participants as a study involving the general population. Based on what was known about the age-specific rates of lung cancer among Finnish men, study designers calculated that the desired effect size (a hoped-for 25% decrease in cancer incidence over a period of 6 years) would be measurable with the required level of statistical relevance if 18,000 older male smokers made up the study group. As it turned out, the age distribution of actual volunteers didn't match the demographics of the eligibility group (volunteers tended to be toward the young end of the eligibility range), and as a result the study's enrollment target had to be reset to 27,000 in order to get good statistical relevance.

Full-scale recruitment of subjects into the ATBC (Alpha-Tocopherol Beta-Carotene) Lung Cancer Prevention Study began in April 1985 and continued until a final enrollment of 29,246 men occurred in June 1988. Enrollees were randomized into one of four equal-sized groups, receiving either 50 mg/day (about 6 times the RDA) of alpha-tocopherol, or 20 mg/day of beta-carotene (equivalent to around 3 times the RDA of Vitamin A), or AT and BT together, or placebo only.

At the same time, which is to say starting in 1985 (after some very small, very brief pilot studies to validate recruitment mechanics), the Carotene and Retinol Efficacy Trial (CARET) started enrolling volunteers in the U.S. Unlike Finland's ATBC study, volunteers for CARET were both male and female and were heavy smokers or came from asbestos-exposed workplace environments. They ranged in age from 45 to 69 and were divided initially into four groups (30 mg/day beta carotene only, 25,000 IU retinol-only, carotene plus retinol, or placebo), but in 1988 the treatment groups were consolidated into one group taking both beta-carotene and retinol. The study design called for continuing the vitamin regimen through 1997, with reporting of results to occur in 1998.

Alas, things went horribly awry, and CARET never got that far.

When the Finns reported results from the ATBC study in April 1994, it sent shock waves through the medical world. Not only had alpha-tocopherol and beta-carotene not provided the expected protective effect against lung cancer; the supplement-treated groups actually experienced more cancer than the placebo group—18% more, in fact. 

This was an astonishing result, utterly bewildering, as it contradicted numerous prior animal studies that had shown Vitamin E and beta-carotene to be promising cancer preventatives. Surely an error had occurred. Something had to have gone wrong. One thing it couldn't be was chance variation: with almost 30,000 participants (three quarters of them in treatment groups), this was not a small study. The results couldn't be a statistical fluke.

As it turns out, the Finnish investigators had actually done a meticulous job from start to finish. In analyzing their data, they had looked for possible confounding factors. The only confounder they found was that heavy drinkers in the treatment group got cancer more often than light drinkers.

Two weeks before the Finnish study hit, the National Cancer Institute was awash in conference calls. Accounts vary as to who knew what, when, but CARET's lead investigator, who had seen the Finnish group's data prior to publication, knew that NCI now had a serious problem on its hands. CARET was doing essentially the same experiment the Finns had done, except it was giving even bigger doses of supplements to its U.S. participants, and the study was due to run for another three and a half years. What if CARET's treatment group was also experiencing elevated cancer rates? Participants might be dying needlessly.

And indeed they were.

When statisticians presented interim results to CARET's Safety Endpoint Monitoring Committee in August 1994, four months after the Finnish study appeared in print, it became clear that CARET participants were, if anything, faring considerably worse than their counterparts in the ATBC study. Even so, the safety committee found itself deadlocked on whether to call a premature halt to CARET. The study's formal stopping criteria (as given by something called the O’Brien–Fleming early-stopping boundary) had not been met. Ultimately a decision was made to continue to accumulate more data. There were those on the safety committee who simply didn't believe the results. The data were aberrant; they had to be. When additional numbers could be gathered they would surely show the early numbers to have been wrong.

A second interim statistical analysis was presented to CARET's safety committee in September 1995, one year after the first analysis. According to the committee:
At that time it was clear that the excess of lung cancer had continued to accumulate in the intervention regimen at about the same rate during the time since the first interim analysis. Further, the cardiovascular disease excess persisted. The conditional power calculations showed that it was extremely unlikely that the trial could show a beneficial effect of the intervention, even if the adverse effect ceased to occur and a delayed protective effect began to appear. Therefore the SEMC voted unanimously to recommend to NCI that the trial regimen should be stopped but the follow-up should continue.
The study was halted—but not until January 1996, nearly two years after final publication of the Finnish results. (Even then, CARET participants were contacted by snail mail to let them know of the study's early termination and the reasons for it.)

CARET's results were published in The New England Journal of Medicine in May 1996. Once again, shock waves reverberated throughout the medical world. Participants who had taken beta-carotene and Vitamin A supplements had shown a 28% higher rate of lung cancer. They also fared 26% worse for cardiovascular-related mortality, and 17% worse for all-cause mortality.

There was great reluctance in the medical community to believe the results. Perhaps the even-worse results of the CARET study (relative to the Finnish experiment) had to do with the decision to include 2,044 asbestos-exposed individuals in the treatment group of 9,241 persons? Not so, it turns out. Intensive segment analysis of the asbestos group's data relative to the heavy-smoker group showed that "There was no statistical evidence of heterogeneity of the relative risk among these subgroups."

What the CARET study had, in fact, done was not just replicate the ATBC results but provide the beginnings of a dose-response curve. The Finns had used 20 mg/day of beta-carotene; CARET employed a 50% higher dose. The result had been 50% more cancer.

It was hard to understand the results of the ATBC and CARET studies in light of the fact that another large trial involving beta-carotene, the Physicians' Health Study, had reported neither harm nor benefit from 50 mg of beta carotene taken every other day for 12 years. However, the Physicians' Health Study population was younger and healthier than ATBC or CARET study groups and was predominantly (89%) made up of non-smokers. This turned out to be quite important. (Read on.)

It's been almost 20 years since the ATBC and CARET results were reported. (And to this day, most clinicians are not aware of the results of either study, at least in the U.S.) What have we learned in that time?

In 2007, Bjelakovic et al. undertook a systematic review of existing literature on antioxidant studies covering the time frame 1977 to 2006. The systematic review procedure was conducted using the well-regarded methodology of the Cochrane Collaboration, a group that specializes in (and is known for) high-quality meta-analyses. In analyzing the 47 most rigorously designed studies of supplement effectiveness, Bjelakovic et al. found that 15,366 study subjects (out of a total treatment population of 99,095 persons) died while taking antioxidants, whereas 9,131 placebo-takers, in control groups totalling 81,843 persons, died in those same studies. (This is not including ATBC or CARET results.) The studies in question used beta-carotene, Vitamin E, Vitamin A, Vitamin C, and/or selenium.

In a separate meta-analysis, Miller et al. found a dose-dependent relationship of Vitamin E with all-cause mortality for 135,967 participants in 19 clinical trials. At daily doses below about 150 International Units, Vitamin E appears to be helpful; above that, harmful. Miller et al. concluded:
In view of the increased mortality associated with high dosages of beta -carotene and now vitamin E, use of any high-dosage vitamin supplements should be discouraged until evidence of efficacy is documented from appropriately designed clinical trials.
How are we to make sense of these results? Why have so many studies shown a harmful effect for antioxidants when so many other studies (particularly those carried out in animals, but also those carried out in predominantly healthy human populations) have shown a clear benefit?

The answer may have to do with something called apoptosis, otherwise known as programmed cell death. The body has ways of determining when cells have become dysfunctional to the point of needing to be told to shut down. When cells reach this point, their mitochondria kick off a cascade of reactions (involving caspases and other enzymes) designed to terminate the cells. Most cancer therapies exert their effect by inducing apoptosis, and it's fairly well accepted that in normal, healthy individuals, precancerous cells are constantly being formed, then destroyed through apoptosis. (In a normal healthy adult, as many as 50 billion cells a day, most of them non-cancerous, are destroyed this way.) Antioxidants are known to interfere with apoptosis. In essence, they promote the survival of normal cells as well as cells that shouldn't be allowed to live.

If you're a young non-smoker in good health, the level of cell turnover (from apoptosis) in your body is nowhere near as high as the level of turnover in an older person, or someone at high risk of cancer. Therefore, antioxidants are apt to do more good than harm in a young, healthy person. But if your body is harboring cancer cells, you don't want anitoxidants to encourage the growth of neoplastic cells by interfering with their apoptosis. This is the real lesson of antioxidant research.

The food industry and the people who make nutritional supplements have no interest in telling you any of the things you've read here. But now that you know the story of the dark side of antioxidants (a story made possible by thousands of ordinary people who died in the name of science), you owe it to yourself to take the story to heart. If you're a smoker or at high risk for heart disease or cancer, consider scaling back your use of lipid-soluble antioxidant supplements (particularly vitamins A and E); it could save your life. (There is no need to scale back vitamin D, however, which has potent anti-cancer effects.) And please, if you found any of this information helpful, share it with family, friends, Facebook and Twitter followers, and others. The story needs to get out. The cancer industry isn't going to tell it to you. They haven't so far. There's too much money to be made selling you $70,000-a-year chemotherapies. No one's going to look out for your health but you.


You Might Also Like
Aspirin for cancer prevention (at BigThink.com): An enormous body of evidence points to vast reductions in cancer rates, for a wide variety of cancers, for those who take NSAIDs like iburofen and aspirin daily.

When Vitamins Turn Deadly: More on the CARET disaster and why it took so long to terminate the study when investigators knew full well that people were dying unnecessarily.

Who Needs Antioxidants? Why the free-radical theory of aging is just plain wrong.

reade more... Résuméabuiyad

The Bacterium Behind Colon Cancer

Today I wrote a post for BigThink that I've been meaning to write for weeks. In August, several papers were published showing that a particular bacterium, Fusobacterium nucleatum, is strongly implicated in development of colorectal cancer (CRC).

Fusobacterium living in intestinal mucosa.
The latest research in no way invalidates the huge existing body of work showing strong (almost certainly causal) connections between CRC and consumption of alcohol, sugar, meat, and/or tobacco. There are other risk factors as well, such as lack of physical activity (by itself), obesity,  and genetics. (See this paper and this one for more discussion, and by all means do further investigation on your own using Google Scholar.) Genetic susceptibility, however, plays a role in no more than about 5% of CRC cases. (And even in those cases, it's by no means certain that bad alleles constitute a death sentence.)

The picture that's emerging is a complex one in which intestinal dysbiosis triggered by (for example) poor eating habits leads to the differential accumulation of various species of gut bacteria (Bacteroides fragilis, Fusobacterium nucleatum, and others) that are implicated in colorectal cancer. At some point (over a period of years, apparently), Fusobacterium gains entry to intestinal muscosal cells. (F. nucleatum has aspects of an intracellular-parasitic lifestyle.) Once it has established residency, F. nucleatum overproduces FadA adhesin, a small protein containing 129 amino acids, the exact sequence for which (in FASTA format) is:

>tr|Q5I6B0|Q5I6B0_FUSNU Adhesion A OS=Fusobacterium nucleatum GN=fadA PE=1 SV=1
MKKFLLLAVLAVSASAFAATDAASLVGELQALDAEYQNLANQEEARFNEERAQADAARQA
LAQNEQVYNELSQRAQRLQAEANTRFYKSQYQELASKYEDALKKLEAEMEQQKAVISDFE
KIQALRAGN

The letters here correspond to amino acids, using the standard one-letter code system (as presented here). In three dimensions, the FadA protein looks something like this:

Your new worst enemy: FadA adhesin produced by Fusobacterium nucleatum, the "kickoff protein" for colon cancer.

When this relatively small protein binds with normal E-adhesin (in a specific 11-amino-acid region), it activates β-catenin signaling, which in turn unleashes a cascade of cytokines (cytokines IL-6, IL-10, IL-12, IL-17, plus TNF-α) and an inflammatory cycle that leads straight to adenoma of the colon.

For the non-paywalled research paper on this, go to http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0053653. Read that paper (and this one, if you can) and decide for yourself how strong the case is for F. nucleatum FadA as a causative agent in colorectal cancer. I think it's pretty clear. We're looking at a smoking gun.

Now the really interesting thing about F nucleatum is that it's most commonly found not in the large intestine but in your mouth. Which brings up some interesting questions, right? For example: How does poor oral hygiene correlate with colorectal cancer? Little work has been done on that specific connection, but a huge amount of work has been (and continues to be) done on the substantial and increasingly obvious link between periodontal disease and cancer in general (which I'll probably blog about at some future time).

If the link between F. nucleatum's FadA protein and CRC proves to be as solid as it's starting to look, it opens countless doors to new therapeutic approaches to CRC treatment and prevention. We need to know, for example, if specific probiotic treatments can greatly reduce the risk of precancerous adenomas by staving off dysbiosis. We also urgently need to know if the outlook for early-stage CRC patients can be improved with aggressive use of antibiotics, including antibiotic-induced near-sterilization of the large intestine followed by fecal transplantation to restore the normal flora.

It hardly needs mentioning, but if it turns out to be true that CRC is mainly a result of a single bacterium, perhaps a vaccine can be developed, either against Fusobacterium or against the FadA protein, or both.

I'm extremely encouraged by the recent research pinpointing FadA as the likely culprit in CRC. Obviously, much work remains to be done. But we have an exciting new insight into this particular type of carcinogenesis. The treatment options that come out of it may well lead to other cures.

Some of us (here I'm speaking with my microbiologist's hat on; I have an advanced degree in the subject) have long suspected that microbes play a role in fostering—and preventing—various cancers. When I was in graduate school, you could count the number of microbially caused neoplasms on your thumbs. Now you have to use most fingers of both hands. Who knows what the full truth may yet turn out to be?

Exciting times.

If you enjoyed this post, or the corresponding one at BigThink, do me a favor. Tweet it or share it in some fashion. This is knowledge that deserves to get out. Who knows? It may save a life.
reade more... Résuméabuiyad

Prostate Cancer and Selenium

Today at BigThink (and here) I'm blogging about prostate cancer, which is the second leading cause of cancer death in American men. In particular, I want to get the word out about selenium's well-documented ability to protect again prostate carcinomas. It turns out there are other important health benefits (for people of both sexes) to selenium, some of which I summarize in my BigThink post.

While selenium's exact mode of action is still not wholly known, it appears the mineral induces apoptosis of cancer cells by triggering caspase-3 a cysteine-aspartate protease involved in the "execution phase" of programmed cell death (apoptosis).

After writing the BigThink post, I decided to have a little fun and try for some do-it-yourself epidemiology graphs. I was startled by the results. This is what I came up with.

Prostate cancer in the U.S., 1970-2004 (obtained from http://ratecalc.cancer.gov/ratecalc/).

The above map shows U.S. prostate cancer by county. Rates are population-adjusted (so you're not seeing mere population density effects). It's obvious that the cancer rate is not randomly distributed by geography. But what, I wondered, could account for the uneven distribution?

I searched online for a map of soil selenium distribution, and this is what I found (at http://tin.er.usgs.gov/geochem/doc/averages/se/usa.gif):


Obviously the inverse correlation between selenium and prostate cancer is not perfect. (How could it be? Americans are a mobile lot; and people don't simply eat locally grown vegetables, etc.) But I think the two maps speak pretty clearly to the role of selenium in protecting against prostate cancer. If you want to draw a different conclusion, so be it.
reade more... Résuméabuiyad